PHYSICAL REVIEW E 71, 061918 (2005)

Analytical derivation of thermodynamic characteristics of lipid bilayer from a flexible

string model
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We introduce a flexible string model of the hydrocarbon chain and derive an analytical expression for the
lateral pressure profile across the hydrophobic core of the membrane. The pressure profile influences the
functioning of the embedded proteins and is difficult to measure experimentally. In our model the hydrocarbon
chain is represented as a flexible string of finite thickness with a given bending rigidity. In the mean-field
approximation we substitute the entropic repulsion between neighboring chains in a lipid membrane by an
effective potential. The effective potential is determined self-consistently. The arbitrary chain conformation is
expanded over eigenfunctions of the self-adjoint operator of the chain energy density. The lateral pressure
distribution across the bilayer is calculated using the path integral technique. We found that the pressure profile
is mainly formed by the sum of the partial contributions of a few discrete lowest-energy “eigenconformations.”
The dependences on temperature and area per lipid of the lateral pressure produced by the hydrocarbon chains
are found. We also calculated the chain contribution to the area compressibility modulus and the temperature

coefficient of area expansion.

DOI: 10.1103/PhysRevE.71.061918

I. INTRODUCTION

We present analytical results derived in closed form for
the lateral pressure distribution in a bilayer lipid membrane.
The case of persistence length comparable with the chain full
length is considered. In this limit we use a path integral
approach different from the one used for description of long
polymers [1,2]. In addition to being of fundamental interest
for the theory of non-Newtonian fluids, our analytical
method, we believe, may also have extensive applications
due to the strong dependence of the protein functioning on
the lipid environment, i.e., the molecular composition of the
membrane and lipid characteristics [3,4]. The lateral pressure
profile in the bilayer influences the distribution of the open
and closed conformations of mechanosensitive channels
[5,6]. The second moment of the lateral pressure profile in
the bilayer directly affects the protein channel activity if the
cross-sectional area of the channel varies with depth [7,8].

The ensemble of chains is described within the mean-field
approximation using a microscopic model of a single hydro-
carbon chain in effective potential (see Fig. 1). The effective
potential allows for entropic repulsion between neighboring
chains in each monolayer. Our model permits analytical deri-
vation of the lateral pressure distributions in a great variety
of membrane constituents and lipid characteristics (head
group type, chain length, etc.) by appropriate change of the
imposed boundary conditions and symmetry of the local self-
consistent potential.

A typical example of our calculated lateral pressure pro-
file is shown in Fig. 2. The profile is obtained under the
following assumptions. The angle between chain tangent and
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chain axis is zero at the head group end and the opposite
chain end (in the center of the bilayer) is free. The total
tension in the bilayer is zero and, therefore, the integral of
the pressure profile produced by the chain, I1,(z), over the
chain length equals the balancing effective tension in the
bilayer, P [§11,(2)dz="Pes.

At the effective tension relevant for a bilayer lipid mem-
brane the main contribution to the pressure profile I1,(z)
comes from the first few lowest-energy eigenfunctions of the
operator of the chain energy density. The eigenfunctions pa-
rametrize the manifold of accessible chain conformations.
Hence, a snapshot of a fluid membrane would counterintu-
itively reveal hydrocarbon chains being involved in a “self-
organized dance” with only a few allowed (lowest-energy)
standard “pas.”

The behavior of the II,(z) curve can be understood by
comparing fluctuations of a lipid chain in bilayer and in
empty space. In the bilayer the chain fluctuations are
strongly suppressed by the neighboring chains with respect
to a free lipid molecule. It will be shown below that the
amplitude of chain fluctuations in the bilayer under natural
conditions is decreased by one order of magnitude with re-
spect to a free chain. Suppression of chain fluctuation leads

single chain
+Ueff
bilayer
FIG. 1. Model of lipid membrane in mean-field
approximation.
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FIG. 2. Lateral pressure distribution in the hydrophobic core of
the bilayer. The pressure arises from entropic repulsion between
hydrocarbon chains in each monolayer. z is the coordinate along the
chain axis normalized by the chain length L and spanning from z
=0 at the head group to z=L at the free chain end. The parameters
for the lipid bilayer are as follows: chain length L=15 A, area per
chain in all-trans conformation Ay=20 A2, chain flexural rigidity
Ky=~kgTyL/3, Ty=300 K, P.;=100 dyn/cm. Pressure is normal-
ized by [Ty=P/3L.

to a decrease of conformational entropy and, in turn, results
in the enhancement of entropic pressure. The most signifi-
cant relative decrease of fluctuation amplitude takes place at
the chain free end (z~L); at the head group region (z~0)
the suppression of fluctuations is noticeable too as lipid
heads are not fixed; at the midchain region the deviations of
a free chain are smaller due to segment connectivity and
restriction of the fluctuation freedom of central segments by
their peripheral neighbors; hence, the decrease of fluctua-
tions for midchain in the bilayer is less pronounced.

This article is organized as follows. In Sec. II we derive
the contribution of hydrocarbon chains to the free energy of
the lipid bilayer in the mean-field approximation. We deter-
mine the equation of state and find equilibrium characteris-
tics of the bilayer. In Sec. IIl we calculate analytically the
lateral pressure distribution across the hydrophobic core of
the lipid bilayer. The results and comparison with previous
calculations of lateral pressure are discussed in Sec. IV. Deri-
vation of the analytical solution for the equation of state is
given in the Appendix.

II. FREE-ENERGY FUNCTIONAL OF HYDROCARBON
CHAIN IN SELF-CONSISTENT APPROXIMATION

The hydrocarbon chain (see Fig. 3) is modeled as a flex-
ible string with bending rigidity K. In the mean-field ap-
proximation, to account for entropic repulsion between
neighboring chains in each monolayer, a harmonic potential
U.=BR?/2 is added to the energy functional of a single
hydrocarbon chain, E;:

L 2
e [ (502 e o
0

Here L is the chain length, K, the chain flexural rigidity, B
the coefficient of entropic repulsion, z the coordinate along
the chain axis, and R(z) the vector in the {x,y} plane char-

PHYSICAL REVIEW E 71, 061918 (2005)

FIG. 3. Hydrocarbon chain as a flexible string of finite thick-
ness. R(z) is the vector characterizing the deviation of the center of
the chain cross section from the z axis, |[R(z)|= VRi(z)+R3(z); Ay is
the “incompressible area” of the chain cross section; A; =7 <R?>
is the area swept by the centers of chain cross sections; A is the
average area per lipid chain in the bilayer.

acterizing deviation from the z axis, R2=R§+R3, of the string
formed by the centers of the chain cross sections.

The bending term in Eq. (1) represents the energy of the
chain trans or gauche conformations. It contains the second
derivative over the z coordinate rather than over the contour
length of the chain. This approximation is valid provided that
deviations from the z axis are small with respect to chain
length. The limit of small chain deviations, |R(z)| <L is con-
trolled by the (small) parameter (this condition is verified
below)

V(R%(2)) - ( kgT )1/2 . @

L LP

This limit is opposite to the one considered in the long
polymer theory [2], where the second derivative in Eq. (1) is
substituted by the first derivative in the random chain ap-
proximation. The presence of the second derivative in the
chain energy functional prohibits direct mapping on the
problem of a quantum particle moving in an external poten-
tial. In the latter case the square of the first derivative (“ve-
locity”) should be involved instead of “acceleration,” as
given in expression (1). We demonstrate below how to cir-
cumvent this difficulty.

The choice of harmonic potential in the second term of
the energy functional (1) is justified since we assume “soft-
ness” of neighboring lipid chains in the limit of small chain
deviation. A harmonic potential was considered in earlier
work [9] for a semiflexible polymer confined along its axis.
In general, B should be z dependent. In this paper we con-
sider the B=const case as a first step in calculating the pres-
sure profile produced by hydrocarbon chains.

Next, we take into account that hydrocarbon chains of
lipid molecules are bulky objects that possess finite thickness
and introduce an “incompressible area” of the chain cross
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section A (see Fig. 3). The area occupied by a lipid chain in
the bilayer is related to the string mean square deviation (R?)
by the following formula:

8A = m(R%) = (VA — VAy)?, 3)

where OA is the area swept by the string formed with the
centers of the chain cross sections. In the text below we
imply by chain deviations those of a string described by the
R vector.

To make numerical estimates based on our model of a
lipid bilayer we use the parameters chain length L=15 A,
chain incompressible area Ay=20 A%, T;=300 K as refer-
ence temperature. The chain flexural rigidity is defined as
[10] K,=EI, where E~0.6 GPa is the chain Young’s modu-
lus [11] and I=A}/4 is the (geometric) moment of inertia.
The flexural rigidity can also be evaluated from polymer
theory [2] Ky=kgTl,, where [,~L/3 is the chain persistence
length [11] and kg is the Boltzmann constant. Both estimates
give approximately K,~kzTL/3 at chosen L and at T=T,.

Using the functional (1) the chain partition function is
found as a path integral over all chain conformations in the
Gaussian approximation:

Z= f exp[- E(R(z))/kT]DR DR,

2
_ ( f expl- E(Rx(z»/kT]DRx)

=7 4)

The second equality in Eq. (4) holds as the membrane is
laterally isotropic and the x and y deviations can be consid-
ered independent.

To calculate the path integral (4) we rewrite the energy
functional (1) using the self-adjoint operator H:

E;=2 | R(2HR(2)dz, (5)
i=x,y
1 &
H0=E<ng+3>. (6)

The operator H is obtained after integrating by parts the
expression (1) under the following boundary conditions (the
z-coordinate spans from the head group at z=0 to the chain
free end at z=L):

(1) R'(0) =0, the chain angle is fixed in the head group
region;
(2) R™(0) =0, no total force is applied to chain at the head

group;
(3) R"(L) =0, zero torque at the chain free end; and

(4) R"(L) =0, zero total force at the chain free end. (7)

The eigensolutions of the operator (6) with boundary con-
ditions (7) have the form
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FIG. 4. The eigenfunctions R,(z) (normalized by 1/ \fz) of the
self-adjoint operator H, for the given boundary conditions. Other
parameters are as in Fig. 2.

K 4
E,,=B+Z4I(§> (4n-1)% n=1,

E():B9 (8)

R,(z)= cn[COS(MZ) + M

hOuo) | Ro(2) = —
COS . =",
cosh(\,L) "~ =L

9)

where ¢, =1\2/L and \,~;L=—m/4+mn. Several eigefunc-
tions are shown in Fig. 4.

Then for an arbitrary chain conformation the deviation
from the z axis and corresponding energy are expanded over
eigenfunctions R, and eigenvalues E, of the operator (6):

R.=2 C,R,,

E,=>, CE,. (10)

The chain partition function is then found as the integral over
the coefficients of expansion (10):

* kT
z.= | TI exp(= CCEk1)aC, =1 \/WE—. (11)

-% n n n

The free energy equals F=—kT In(Z). The B-dependent
chain contribution to the free energy of the bilayer is defined
as follows:

E,(B)

AF,=F(B)-F(B=0)=kT>, In E(B=0)"

n

(12)

Using expression (1) we differentiate the free energy and
obtain the self-consistency equation in the form

= L(R?) (13)

The self-consistency equation (13) combined with for-
mula (3) permits us to find the B(A) dependence and to ex-
clude the coefficient of entropic repulsion B from the equa-
tion of state and equilibrium condition.
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FIG. 5. Calculated lateral pressure P; produced by hydrocarbon
chains as a function of area per chain at two temperatures T, (solid
line) >T, (dashed line). Lateral pressure is normalized by kzT,/ A,
area is normalized by A,. Other parameters are as in Fig. 2.

The equation of state reads as
— JAF(A)/dA = P,, (14)

where P, is the total lateral pressure (or tension), produced
by hydrocarbon chains, integrated over the hydrophobic
thickness of the monolayer. In Fig. 5 the calculated lateral
pressure produced by hydrocarbon chains is shown as a func-
tion of the area per chain. Differentiation of P,(A) gives the
area compressibility modulus

— A dPl(A’ T)

=-A (15)

as a function of the area per chain and temperature. The
equilibrium condition is found by equating the pressure pro-
duced by chains to the effective lateral pressure in the bi-
layer:

PI(A(T)) =Peff= 'y+ PHG+PVdW7 (16)

where 7y is the surface tension at the hydrophobic-
hydrophilic interface; Pyg is the head group repulsion of
electrostatic origin; P,y is the pressure arising from the van
der Waals interactions between chains, etc. We choose P
> y~50 dyn/cm because attractive dispersion interactions
between hydrocarbon chains are included in the effective
surface tension [12]. At room temperature for a typical lipid
bilayer = with effective surface tension S50=<P;
<150 dyn/cm [4,12] the analytic solution for the equation
of state reads (the detailed derivation is given in Appendix)

PaT) kT2'3 1

a, =""1n y’_— b
(D= o Taa—
where a=A/A,, v=KAy/2mksTL*=0.005 is a dimension-
less parameter. For the estimates at 7, we adopt Py
=100 dyn/cm.

We derive the area per chain in the thermodynamic equi-
librium at a given temperature 7, A(T), from the equilibrium
condition (16). Differentiating it we find the temperature co-
efficient of area expansion

(17)

1dA

:Ad_T' (18)

T
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FIG. 6. Temperature dependence of equilibrium area per chain,
A. Temperature is normalized by 7|, area is normalized by A.

In Fig. 6 the temperature dependence of the area per chain
in the bilayer is shown. Solutions of Eq. (14) yielding ana-
lytical dependence P,(A) displayed in Fig. 5 is given in the
Appendix.

III. ANALYTICAL CALCULATION OF LATERAL
PRESSURE PROFILE

So far, the equation of state derived above permits one to
find the lateral pressure integrated over the chain length, i.e.,
over the hydrophobic thickness of a monolayer. To find the
distribution of lateral pressure across the bilayer, i.e., along
the z axis normal to the bilayer plane, we apply the following
procedure. We perform differentiation of the free energy over
the chain area A under the constancy of the chain specific
volume: V=LA. The energy functional of the hydrocarbon
chains (1) can be rewritten in equivalent form allowing for
orthonormality of the eigenfunctions R,(z):

L
E,=> EC> f R(2)dz. (19)
n 0

Then, differentiating the chain partition function we obtain

JIAF, L ( 1 4Z(B) 1 azx(B=0)>

oA~ TP \zB) A  Z(B=0) A
J E,(B) ) f L

=kgT2, —In| ————— R (z)dz. 20
? gaA n(En(B=O) 0 o)z (20)

Then comparing the relation thus obtained with the nor-
malization condition for the lateral pressure distribution,

L
f I,(z)dz = P,, (21)

0

we finally find

I,(z) = — ksT >, Rz(z)i ln[b(A) + (Z>4(4n - 1)4]
' P oA 4
_ kgTdIn[b(A)]

, 22
L J0A @2

where the dimensionless parameter h=BL*/K r is introduced
in the Appendix. The b(A) dependence follows from the self-
consistency equation (13) [see Eq. (A5) in the Appendix].
It is obvious that the terms in the sum in (22) decrease as
1/n*. Due to the fast convergence of the sum only the first
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few terms contribute to the pressure profile. The normalized
lateral pressure profile (22) is plotted in Fig. 2.

Now we can verify the exploited approximation of the
small chain deviations in the bilayer (2). We calculate the
thermodynamic average of the chain fluctuation amplitude
(R?(2)) using the relation <R§’y(z)>=2n<C5>R5(z) and averag-
ing over C,:

2
(R*(2)) =2(R} (2)) = kT2, RE—(Z) (23)

n n

It is worth mentioning that integration of both sides of Eq.
(23) over z from 0 to L provides the self-consistency equa-
tion (13). Since E,xn*, the sum in Eq. (23) converges fast
and allowing for the relation Ri(z) ~1/L, we estimate it as
>,1/E,1/B. According to Eq. (1), the increase of potential
energy associated with the increase of area swept by the
string from O to SA is of order BLSA (the string is formed
with the centers of the chain cross sections). On the other
hand it is equal to the work against the pressure Py needed
to increase the area per chain in the bilayer from A, to A:
BLSA= P {(A—A,). From the last equality and relation (3) it
follows that B> P /L. Then we can evaluate

R’ 1
sRE_ L (24)
n En Peff

and find a rough estimate for the upper limit of the small
parameter:

V(R*(2))IL < (kgT/L*P.) "> = 0.14. (25)

Finally, we compare the amplitudes of chain fluctuations
in the bilayer (23) and in empty space. For a free chain with
flexural rigidity K, the characteristic deviation R® can be
evaluated by equating the chain bending energy to k7. This
yields

kgT
e AR (26)
K,
Allowing for Eqs. (23) and (26), we find \(R?)/R,~0.1.

IV. DISCUSSION

We derived an analytical expression for the lateral pres-
sure profile across the hydrophobic core of a lipid bilayer.
Though difficult to measure experimentally, the profile is an
important characteristic of the lipid bilayer that determines
the activation barrier of membrane protein channels [7]. The
calculated profile qualitatively agrees with the results of mo-
lecular dynamics simulations [8,12]. The pressure profile as a
function of the depth in the bilayer shows a decrease in the
midchain region and noticeably increases farther at the chain
end in the center of bilayer. This behavior differs from the
earlier mean field and Monte Carlo calculations [2,13,14]
that exploited lattice models of the bilayer. In the referenced
works the lateral pressure decreases toward the bilayer cen-
ter, simultaneously with a decrease of the chain order param-
eter. The latter signifies high conformational entropy of the
segments at the chain end. This behavior indicates that the
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mean square deviation of the chain in the bilayer model is
comparable with that of a single free chain. The authors did
not present information on this important characteristic. In
our work we calculated the mean square deviation of a chain
in the bilayer directly in analytical form. For a single free
chain the deviation increases as the square root of the con-
tour length, and thus the fluctuation amplitude is maximal at
the chain free end. We demonstrate that the chain deviation
in the bilayer is one order of magnitude smaller than that of
a free chain. Therefore, this relative reduction of the chain
accessible volume leads to a decrease of the conformational
entropy and to an increase of lateral pressure toward the
bilayer center (chain free end).

In our model we found analytically the temperature and
area per lipid dependence of the lateral pressure produced by
hydrocarbon chains. The chain contributions to the area com-
pressibility modulus and the temperature coefficient of area
expansion are calculated. The obtained temperature coeffi-
cient of area expansion (~2X 1073 K™!) lies in the interval
of experimentally measured values. We conclude that the
chain contribution to area expansion with temperature is
dominant. At the same time the calculated chain contribution
to the area compressibility modulus (~100 erg/cm?) proves
to be smaller than the intrinsic area compressibility of the
bilayer (~300 erg/cm?) [12]. This suggests that the head
group region is more rigid than the hydrophobic core.

To summarize, we proposed a method of analytical self-
consistent calculation of the lateral pressure profile from a
microscopic model of a lipid bilayer. An analytical expres-
sion for the equation of state of the membrane is also de-
rived. It shows reduction of the chain fluctuation amplitude
in the bilayer by one order of magnitude with respect to that
of a free chain. The calculated lateral pressure profile is in
qualitative accord with recent numerical results obtained by
molecular dynamics simulations.
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APPENDIX

Here we present the solution of the self-consistency equa-
tion (13) and find the analytical temperature and area per
chain dependence of the lateral pressure produced by the
chains using the equation of state (14). It is convenient to
perform the derivations in dimensionless parameters,

L4
a= A/Ao, b= _B,
Ky

(A1)

and to introduce the auxiliary parameters
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2akpTL®’

where L~ 15 A is the chain length, Ay~20 A? is the “in-
compressible area” of the chain cross section, and the chain
flexural rigidity Ky=kzTL/3 at T~T;=300 K. Using these
estimates we obtain v =0.005.

In the introduced notations (A1) and (A2) with E, defined
in Eq. (8) the self-consistency equation (13) acquires the
form

4
¢, = (g) 4n-1)" n=1; (A2)

1 - 1
Z+E =v(Va-1)2.

A3
n=1 b+ Cn ( )

The terms in the sum on the left hand side of Eq. (A3)
decrease fast with growing n, e.g., ¢;=31, ¢,=914, c3
=5571, etc. The number of terms contributing significantly to
the left hand side of Eq. (A3) depends on the order of mag-
nitude of the parameter b, which is in turn determined by the
value of the effective surface tension in the bilayer, P,
according to the equilibrium condition (16). At room tem-
perature we estimate that the effective surface tension in the
real bilayer belongs to the range 50=< P ;=< 150 dyn/cm
[4,11], which bounds the interval for parameter b: 10°<b
<10°. In this regime we can solve Eq. (A3) analytically by
substituting summation over n with integration, which yields
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©

| lfw dn B 1
Sbtc, 2) b+ (mhEn+3)* T 2\2p¥4
(A4)

It is interesting to mention that integrating the right hand
side of expression (A4) over b gives AF~b'*, which is in
accord with the result [9], obtained using a different method.

This permits us to find the b(a) dependence:

1

b= 4p¥B3(\a - 1) (AS)
which is then used in the equation of state (14). As a result
we find the expression for the lateral pressure produced by
the hydrocarbon chains:

kT2 1
Pfa,T)= o3 T

—_ (A6)
Agv \'a(\'g— 1)>3

Here the additional multiplier 2'/3 is introduced to com-
pensate for the substitution of the asymmetric sum in (A4)
by a symmetric integral. This multiplier is found by fitting
the analytical P(a) curve to the numerically calculated de-
pendence. Plots of the pressure vs area dependence (A6) at
different temperatures are displayed in Fig. 5.
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